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Normalized Implicit Radial Models for Scattered Point Cloud Data 
without Normal Vectors 

 
 

Gregory M. Nielson, Tempe 
 

Abstract 
 

We describe some new methods for obtaining a mathematical representation of a surface 
that approximates a scattered point cloud, ( ){ }Nizyx iii ,,1,, L=  without the use or need 
of normal vector data.  The fitting surface is defined implicitly as the level set of a field 
function which is a linear combination of trivariate radial basis functions.  Optimal 
approximations are based upon normalized least squares criteria which lead to 
eigenvalue/eigenvector characterizations.   The normalized aspect allows for the 
exclusion of the need of normal vector estimates which is one of the unique features of 
this new method.  Localizing techniques are introduced to allow for the efficient 
application of these new methods to large data sets.  The use of a variety of radial basis 
functions are introduced through various examples that illustrate the performance and 
efficiency of the new methods 
 
Key Words: Surface fitting, point clouds, implicit least squares, isosurfaces, noisy 3D 
data, scattered data approximation 
 
 

1. Problem, Introduction and Motivation 
 
We present a new technique for modeling a scattered point cloud data, 
( ){ }Nizyx iii ,,1,, L= .  Based upon least squares error criteria the method determines 

the parameters of an implicit model, ( )zyxF ,, , so that the zero level contour surface,  
( ) ( ){ }0,,:,, =zyxFzyx  yields a surface that approximates the point cloud.  One of the 

unique features of this new method is the lack of the need of normal vector estimation.  
Estimating normal vectors (including orientation)  can be problematic and error prone 
and so it is rather beneficial if this process can be avoided.   Prior to proceeding to the 
details of describing our new method, we give a brief overview of point cloud fitting 
techniques which establishes the context and provides motivation. 
 
One of the first things that we should point out is that the problem of point cloud fitting 
should be distinguished from that of scattered data modeling [11, 12, 21].  Even though 
many of the basic techniques and tools from CAGD (Computer Aided Geometric Design) 
and multivariate approximation theory apply to both problems, they are basically 
different.  The problem of scattered data modeling is concerned with methods of 
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producing a bivariate function ( )yxF ,  such that ( ) iii zyxF ≈, .  That is, for the traditional 
scattered data modeling there is the assumption that the data consists of samples taken 
from the surface graph of a bivariate function.  One fundamental connection between the 
two problems is through some type of parameterization of the point cloud [8, 9] whether 
this be implicit or explicit.   The term “scattered data” was coined by Schumaker in his 
1976 paper and there was a great deal of interest and published research on (mainly) 
bivariate problems in the 70s and 80s.  With the advent of scientific visualization along 
with volume visualization in the 90s, there was growing interest in trivariate scattered 
data modeling [21] and interest in this area continues to grow.  In many respects, the 
problem of point cloud fitting is more difficult because it is less understood, but the 
widespread and strong need (see [20]) for practical and effective methods make this an 
important problem. 
 
A number of methods involve the signed distance function (see [14]), ( )PD , which is a 
trivariate function defined to be zero on the surface S , negative interior to S  and 
positive outside of S .  The surface is extracted from ( )PD  as a triangular mesh surface 
approximation to the zero level isosurface.  Typically, ( )PD  is sampled on a 3D 
rectilinear grid and a method like the marching cubes algorithm [22] is used.  Once it is 
decided what the metric or the definition of distance from a surface to a point cloud is to 
be, it is usually not too difficult to develop algorithms for the efficient computation of the 
distance function.  The particular difficulty here is getting the sign right; that is, to be able 
to efficiently and effectively determine when a point is inside the surface or outside.  
Typical of the methods based upon distance functions is that of [15], where the sign is 
based upon local least squares estimates of the normal vector of the surface and a 
consistent orientation (in or out) is sought with the Riemannian map estimate.  One of the 
drawbacks to this method is the heuristics of the signed distance function calculation may 
lead to gaps in the surface and the difficulty of choosing the proper resolution for the 
marching cubes voxel grid can have detrimental effects on the success of the method.   
 
Another important concept involved in point cloud fitting problems is the Delaunay 
tetrahedrization and its dual, the Dirichlet tessellation and Voronoi diagram.  The method 
based upon alpha shapes of [6] is a typical and early example.  Here the first step is the 
Delaunay tetrahedrization.  The second step is to apply the alpha-erasure to remove 
tetrahedra, triangles and edges whose minimum surrounding sphere is not contained in 
the alpha –erasure sphere.  The result is called the alpha-shape.  In the third step, triangles 
for the final surface are selected so that a sphere of radius alpha containing the triangle 
does not contain any other point cloud points.  The main negative aspect of this approach 
is the choice of a suitable value of alpha.  Too big of a choice leads to poor 
approximations not utilizing many of the points of the point cloud and too small a choice 
leads to gaps and fragmented surfaces.  We mention another potential drawback to these 
types of methods for certain applications.  The resulting triangular mesh surface has 
vertices that are points of the original point cloud.  For noisy data or overlapping data 
resulting from imperfect registration of scanned data, this may be undesirable.  Rather 
than interpolated the point cloud (or a subset), it is potentially more desirable to 
approximate it for some applications.  
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Another class of methods obtains a triangle mesh surface (TMS) approximation to the 
point cloud by deforming an initial approximation using metrics that measure the distance 
between the point cloud and the TMS with possible refinement of the TMS.  
Representative examples of such methods include [7] and [24].  Adaptive techniques 
allow fitting methods to efficiently apply more resources to regions of higher complexity 
(see [1], [2]). 
 

2.0 Normalized Implicit Eigen-value/vector Least Squares Models 
 

Given a collection of scattered points NiPi ,,1, L=  we are interested to find a field 
function ( )PF  of an implicitly define model so that zero level contour, 
( ) ( ){ }0,,:,, =zyxFzyx , represents an approximation to the data in the sense that 
( ) NiPF i ,,1,0 L=≈ .  We assume that the fitting function F  is spanned by the basis 

functions, ( ) MjPBj ,,1, L=  and that the least squares criteria is used and so we 
consider the problem: 
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Without additional constraints, this problem is not well formulated since an optimal fit is 
the identically zero function.  We add the additional constraint of normalizing the 
weights/coefficients of the fitting function and consider the modified optimization 
problem: 
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We now set out to find the characterizing equations for the minimizing set of coefficients, 

MjFj ,,1L= .  While it is possible to invoke some general results concerning Rayleigh 
quotients (see [16]) it is both interesting and instructive to proceed using conventional 
calculus techniques.  To this end, we introduce the following notation for the objective 
function of (1), 
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A minimizer of φ , necessarily must be a stationery point; that is, a root of the gradient, 
which requires that  
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Using the standard calculus quotient rule for derivatives, we have 
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It is easy to see that the above system of equations is equivalent to 
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where  ∗= BBA  denotes the gram matrix and  
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At this point, we assume that the data, NiPi ,,1, L=  and the basis functions 

MjBi ,,1, L= are such that A  is positive definite.  From Equation (4), we can see that 
minimizing solution, F  must be an eigenvector of A .  If we let λ  be the associated 
eigenvalue then we may also conclude that  
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and so we have established the fact that the vector F  that minimizes (2) is the 
eigenvector of the gram matrix, ∗BB  associated with its smallest eigenvalue. 
 
2.1 Proof of Concept Example 
 
We now present a very simple example which illustrates the fitting process and which 
can be subsequently used by others to check and verify concepts and implementations.  
Here we have thirteen (13) data points: ( )13.0,44.0 , ( )15.0,24.0 , ( )35.0,22.0 , 
( )49.0,31.0 , ( )60.0,35.0 , ( )70.0,43.0 , ( )77.0,51.0 , ( )70.0,57.0 , ( )55.0,70.0 , 
( )30.0,85.0 , ( )23.0,88.0 , ( )10.0,80.0 , ( )10.0,60.0  which are depicted in the right image 
of Figure 1.  We use a set of basis functions which give rise to the general model 
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where ( )yxP ,=  and MjQ j ,,1, L=  are the “knots” for the exponential radial basis 
functions.  For this particular example, we simply choose 1=R , 1=μ  M = 3 and knot 
values ( )6640.0,5120.01 =Q , ( )1825.0,7825.02 =Q  and ( )2800.0,3025.03 =Q .  These 
knots are selected according to the “venetia criteria” which is explained below, but 
basically this means that these three knots are the “closest” three points to the data points 
{ }13

1=iiP .  This requires that each knot be the centroid of the data points lying in its 
Voronoi/Dirchlet cell/tile.  For this particular case, we have 

5/)( 987651 PPPPPQ ++++= , 4/)( 131211102 PPPPQ +++= , 4/)( 43213 PPPPQ +++=  
and  
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The smallest eigenvalue of ∗BB  is 0.00273142  leading to the solution 
 
         ( ) 321 306.0526.0258.093.0088.0740.0, QPQPQP eeeyxyxF −−−−−− −−−−+=  
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Which is depicted in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The normalized implicit field function is shown on the left and on the right is shown the zero 
level contour of this implicit fit along with the input scattered point cloud.   
 

3. Venetia Criteria for Knot Selection. 
 
Some related methods for knot selection have previously been used and discussed in [10], 
[13], [23], [25].  This method of selecting knots used here is based upon minimizing the 
distance between the knots { }MjQ j ,,1, L=  and the scattered point cloud, 
{ }NiPi ,,1, L= .  This minimal distance requirement leads to the sufficient condition 
called the “venetia criterion” where jQ  is required to be the centroid of the points lying 
in its Theissen/Dirichlet region.  The Theissen/Dirichlet region is defined to be the set of 
points closer to jQ than any other jkQk ≠,  and is denoted by [ ]jQDT / .  Computational 
algorithms for the case of two-dimensions are discussed in [10] and for case of three-
dimensions in [25].  These algorithms involve the basic “venetia iteration” where a knot 

( )K
jQ  is updated to a new knot ( )1+K

jQ  which is the centroid of the data points lying in the 

Theissen/Dirichlet region of ( )K
jQ .  As it is pointed out in both [10] and [25], this type of 

iteration quickly converges, but not necessarily always to a global optimal knot set that is 
a minimal distance to the data points.  Nevertheless, we have found that with good initial 
knot distribution, this type of iteration leads to a very efficient means of determining knot 
locations which subsequently leads to overall efficient implicit approximation models. 
 
In the example shown in Figure 2, we use as an initial approximation the centroids of the 
points lying in the lattice grid points of a 3x3 grid.  As it turns out two of the nine cells 
are void of data points and so this approach only leads to seven knots.   
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Figure 2.  The scattered point cloud is illustrated with “unfilled” circles and the knots are the “filled” 
circles.  The knots in the right image are characterized by the “Venetia Criterion” which is a sufficient 
condition for minimizing the overall distance between the knots and the scattered point cloud and implies 
that each knot is the centroid of the data points lying in their respective Theissen/Dirichlet regions.  Each of 
the nine regions of the left image containing data points is “seeded” with a knot prior to the optimization 
process. 
 

4.0 The Localization Technique 
 
For large data sets, the concepts of localization can be used where the fitting process is 
broken down into s a collection of smaller problems and the final model is a blend of 
these local smaller and simpler fitting problems.  This general technique is described in 
[21].  The basic ideas of the technique were also used by [26] where they refer to Franke 
& Nielson [11] as their original source for the basic idea.  Here, we give a brief, high 
level, overview of this technique within the context of scattered data interpolation.  Input 
to the problem of scattered data modeling consists of a collection of scattered data point 
locations NiPi ,,1, L=  contained in the domain D  and associated dependent data values 

NiYi ,,1, L= .  It is desired to construct an interpolating function F  defined over D  that 
has the property, ( ) .,1, NiYPF ii L==   Let MkWk ,,1, L=  be a collection of functions 
defined over D  and further assume that the each kW  has local support.  That is the set of 
points jP  such that ( ) 0≠jk PW  is a small subset of the total number of N  points and the 
every data point must lie in the support of some mW .  Also it must be the case that 

( )∑
=

≡
M

k
k PW

1
1  for all points P  in the composite domain.  Note that this last condition is 

not a deal breaker for if it is not satisfied, then it is possible to use the “normalized” 

weight functions ∑=
k

k
k W

Ww  which do have this sum-to-unity property.  Assume we 

have a collection of local interpolating functions ( )PFk  each having the property that 
( ) iik YPF =  for all iP  in the support of ( )PFk , then the composite weighted model 
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 has the property that  
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                             ( ) ( ) ( ) i
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,  for all Ni ,,1L= . 

 
Here we are not solving an interpolation problem, but rather a least squares 
approximation and also we are not doing conventional scattered data interpolation ( i. e. 

( ) iik YPF =  ), but yet, we can still exploit these basic ideas to make large data set 
problems tractable with our present approach.  We can explain best how this technique 
works with a simple example with 32 scattered data points as illustrated in Figure 3.  We 
wish to find an implicit model similar to what was accomplished in the previous example 
of Figure 1, but rather than solve the overall problem, we break it down into some smaller 
problems and combine the solutions using the techniques of localization.  Potential 
candidates for localizing functions are piecewise bilinear/trilinear functions defined over 
a user specified MN ×  or KMN ××  grid.  Each localizing function ijW  has the 
property that ( ) jlikij lkW δδ=, .  Since the sum of these localizing functions is a piecewise 
bilinear (trilinear) which takes on the value 1 at each grid point and the summation is 
identically equal to 1.  For each localizing function, we compute the approximation based 
upon the data points lying in the support of this localizing function.  The final 
approximation is then the weighted sum of the local approximations.  For the example of 
Figure 3, the domain is the square [0,3]x[0,3].  Actually for this small case where the 
“exceptional” boundary cases constitute such a large percentage of the cases, we only 
compute four localized approximations; one each of the four subsets of data lying in the 
domains [0,2]x[0,2], [0,2]x[1,3], [1,3]x[0,2] and [1,3]x[1,3].  These are respectively 
referred to as 211211 ,, FFF and 22F .  The final result is      
 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )yxFwwwwyxFwwww
yxFwwwwyxFwwwwyxG
,,

,,,

22333123222131302120

12131203021111100100

+++++++
+++++++=

 (6) 

 
which is illustrated in the two lower images of Figure 3.  Using only four approximations 
here rather than 16 serves to point out the possibility of other data dependant 
consolidations to be used for localization that are based upon rectilinear grids.  There are 
a large number of potentially interesting and useful options to consider and exploit in this 
context. 
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Figure 3.  An example that illustrates the localization process.  The upper four graphs show the data and the 
contour of the normalized implicit model applied to the data contained in bounded rectangular region 
respectively.  These regions constitute the support of the localizing functions being used.  The two images 
in the bottom row show the final blend of these four local approximations. The blending functions are 
piecewise bilinear functions which take on 0 or 1 at each of the integer lattice domain points and have 
support on the respective rectangles.  The lower, left image is the global normalized implicit model and the 
lower, right image shows the zero level contour along with the input scattered point cloud.  It is really very 
interesting that the quality of the fit is so good even without the use of normal vector (orientation) 
information. 
 

5. Examples and Applications 
 
5.1 Parameter specification for least squares parametric curve fitting 
 
This first example is a typical representative of a 2D curve fitting problem where we are 
given a collection of points ( ) Niyx ii ,,1,, K=  and it is desired to fit a curve that 
approximates the shape inferred by these points.  Since the data does not necessarily infer 
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a function relationship, ( )xFy = , parametric methods ( ) ( )( ) 10, ≤≤ ttytx   can be used.  
Most any approach based upon parametric curves will require the specification of 
associated parameter values it  for each scattered point ( )ii yx , . For this example we will 
use least squares fitting and so once the parameter values are specified, the linear, least 
squares fitting problem is rather straight forward:  
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where { }MBBB ,,, 21 L  are the basis functions, ( )iii yxp ,=  are the points of the scattered 
point cloud, Mkck ,,1, L=  are the to be determined coefficients of the final fitting model 
and Niti ,,1, L=  are the all-important parameter values which have yet to be specified.  
Once these parameter values are specified, solving the minimization problem of (7) has 
been studied extensively and there are many efficient and effective computational 
methods generally available.  If these parameter values are not known, but the scattered 
data points are at least ordered, then there are available a number of rather effective 
means for determining parameter values.  If we choose to not specify these values, then, 
it is possible that these values can be left undetermined and simply be added to the 
unknowns for the minimization process.  This makes the least squares problem nonlinear 
and extremely problematic.  Here, we suggest using the implicit methods as a basis for 
selecting these parameter values.  In a nutshell, the approach is as follows.  First an 
implicit model as we have described here is fit to the data points ( )ii yx , .  Next the data 
points are projected onto the contour of the implicit model.  These values are ordered by 
there projections onto the zero level contour.  This ordering (and possibly the relative 
distances along the contour) is used to determine the parameter values.  In the example of 
Figure 4, we use an approximate projection of each data point onto the contour of the 
implicit model.  The projection is taken to be the intersection of the contour and the 
parametric line 
 

                                          ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

+= iiiiii yx
y
Fyx

x
FtyxtL , . 

 
Depending upon the details of how F  is stored and/or represented, the gradient may or 
may not be immediately available.  If not, discrete approximations can be used. 
 
For the example of Figure 4, we have 70 scattered data points.  An implicit model, 
similar to that of Figure 3 is fit to these points.  The data and the fit are shown in the top 
image of Figure 4.  Each of the data points is projected onto the contour of the implicit 
model.  These projected points give a relative order for the data points which is used to 
obtain the associated parameter values  { }70

1=iit .  Based upon these parameter values, a 
periodic, parametric cubic spline is fit to the airfoil data in the least squares sense.  The 
result is shown in the bottom image of Figure 4.  
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Figure 4.  Top image shows airfoil data and NIRM fit.  The bottom image shows the least squares 
parametric spline fit with proportionately spaced knots so that each knot interval has approximately the 
same number of data point parameter values. 
 
5.2 Boot and Foot CSG Example 
 
This next example utilizes a scattered point cloud data set obtained from scanning a 
physical boot which is depicted in the left image of Figure 5.  There are approximately 
one million data points.  While the point set is fairly uniformly dense, it is rather noisy 
due to the method of collection which requires only a video projector and a camera (see  
[27] for example).   A 10% sample of the points is shown in the center image of Figure 5.   
A rendering of the implicit model is shown in the far right image of Figure 5.  A localized 
model using the techniques of Section 4 is used.  The grid analogous to the 33×  grid of 
Figure 2 is a uniform grid of size 100x100x50 over the bounding cuboid of the data.  The 
localizing technique of Section 4 is used based upon piecewise, trilinear localizing 
functions defined over a 50x50x25 grid. The basis functions are of the form 
 

                                  ( ) ∑
=

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−
++++=

M

j

jj
j

j

R

QPR
FdzcybxazyxF

1

,,

μ

. 

 
These basis functions have previously been successfully used in [23].  The value of R  is 
the radius of the support regions of the localizing functions.  The power μ  is simply set 
to 2 for this particular example.  The knot selection technique described above is seeded 
with 7 knots per non-empty cell.  The final implicit fit is sampled on a 3D rectilinear grid 
and the dual marching cubes [22] method is used to compute a polygon contour surface. 
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Figure 5.  Left image is photograph of motocross boot.  Middle image is rendering of 10% of the 
approximately one million data points scanned from a physical boot.  Right image is a rendering of 
isosurface extracted from implicit model.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  Top left image is contour of implicit model of “noisy foot” data using exponential basis 
functions.  Bottom left is right foot obtained as ( )0),, =zxyF .  Right image illustrated the results of 
Boolean operations which are easily accomplished with implicit models. 
 
In Figure 6 we show yet another example.  This example utilizes the “noisy foot” data 
from Geomagic.  Here we use the 3D versions of the same exponential basis functions 
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used in Example 2.1.  In the right image we show an example of where the “foot” has 
been removed from the “boot”.  One of the reasons for including this example is to 
underscore the ease of computing Boolean operations (see [3]) on models that are 
implicitly defined as is the case for the fitting models of this paper.  If we let AF  denote 
the field function for a point set A  whose boundary is a surface of interest.  That is 

( ) ( ){ }0,,:,, ≥= zyxFzyxA A .  And if B  is another three dimensional point set with the 
field function BF , then it is easy to see that the union is defined by 
 
            ( ) ( ) ( )( ){ }zyxFzyxFMaxzyxBA BA ,,,,,:,,=∪  (8) 
 
and so we have that ( )BABA FFMaxF ,=∪ .  Similarly, we have for the intersection 

( )BABA FFMinF ,=∩ . 
 
 

6. Remarks 
 
1.  Here we have used two classes of radial basis functions.  Namely  
 

                                  ( )
j

jj
M

j

QPR
jeFdzcybxazyxF

μ

∑
=

−−++++=
1

,,  (9) 

and 
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j
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jj
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FdzcybxazyxF

μ

∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−
++++=,, . (10) 

There are a great number of other radial basis functions which could be considered that 
may have particularly efficient fitting capabilities for certain types of data sets. 
 
2.  Using the same data as in the “proof of concept” example of Section 2.1, but with the 
basis functions of (10) (with 1=jR , jj ∨= 2μ ), we obtain the results shown in Figure 
7.  While the contour seems to be a superior fit to that of the earlier example, the criteria 
of normalized least squares is actually larger for this model.  The smallest eigenvalue for 
example of Figure 1 is .00273 and here the smallest eigenvalue is 0.00767 and so, in a 
standard least squares sense of measuring error the approximation of Figure 1 is actually 
better.  This seems to indicate that some possible adjustment in the overall fitting criteria 
may be in order.  A shallow field function would lead to a small RMS error, but the 
distance of the point cloud to the contour surface could still not be small.  Normalizing 
with gradient norms is a possibility, but, of course, we don’t want to destroy the 
relationship of the solution we have here and its connection to the eigenvalues and 
eigenvectors.  Care must be taken to appropriately alter the fitting norm, but still be able 
to solve the problem without resorting to the iterative methods of nonlinear least squares 
fitting.  We will report on our progress in this area in a future paper. 
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Figure 7.  The same point cloud as in the example of Figure 1, but with different radial basis functions.  
The contour appears to be a better approximation, yet the implicit least squares fit error is larger.  This 
motivates discussion about using a different fitting criteria (error metric).  The triad of the right image is the 
Dirichlet tesselation of the knots which are indicated with numeric values.  We note that the knots satisfy 
the “ventia” criteria in that they are the centroids of the scattered point cloud lying in the respective 
Dirichlet tiles. 
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